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Abstract

Strictosidine glucosidase (SGD) from Catharanthus roseus catalyzes the deglycosylation of
strictosidine, an intermediate from which thousands of monoterpene indole alkaloids are derived.
The steady state kinetics of SGD with a variety of strictosidine analogs revealed the substrate
preferences of this enzyme at two key positions of the strictosidine substrate. Additionally, SGD
from C. roseus turns over both strictosidine and its stereoisomer vincoside, indicating that although
this enzyme prefers the naturally occurring diastereomer, the enzyme is not completely
diastereoselective. The implications of the substrate specificity of SGD in metabolic engineering
efforts of C. roseus are highlighted.

Monoterpene indole alkaloids (MIA) are a large class of pharmaceutically valuable and
structurally complex natural products.1 Directed biosynthesis studies have shown that the MIA
pathway can produce a variety of “unnatural” alkaloids by utilizing non-natural substrate
analogs.2 This inherent flexibility suggests that MIA biosynthesis could provide a robust
platform for metabolic engineering. However, not all substrate analogs are likely to be
incorporated into the pathway with equal efficiency. If substrate specificity of individual
biosynthetic enzymes correlates with rate limiting steps in vivo, then enzymes having a low
catalytic efficiency for a non-natural substrate could be reengineered to improve turnover of
the analog.3 Therefore, evaluation of enzyme substrate specificity is critical for biosynthetic
engineering efforts. In MIA biosynthesis, the central biosynthetic precursor strictosidine 1 is
deglycosylated by strictosidine glucosidase (SGD) to yield a reactive intermediate that
rearranges to form the wide variety of MIA (Scheme 1).4 Here we evaluate the substrate
specificity of SGD from Catharanthus roseus with a variety of strictosidine analogs to
determine whether SGD could act as a bottleneck in the production of novel alkaloids from
unnatural strictosidine analogs.

SGD was assayed with strictosidine analogs 2-9 (Table 1).5‘8 An HPLC assay was used to
monitor both strictosidine disappearance and deglycosylated product formation. Since all
kinetic data appeared to fit a sigmoidal rather than a Michaelis-Menten curve, kinetic constants
were obtained from a sigmoidal fit to the data (Figure 1).9’10 SGD from C. roseus has been
reported to form aggregates consisting of 4 to 12 monomers;+2 although a sigmoidal fit has
not been previously reported for C. roseus SGD, the oligomeric state of the enzyme is
compatible with the cooperative mechanism suggested by the sigmoidal curve.
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The catalytic efficiencies (Vmax/Ko.5) of indole substituted strictosidine derivatives 2-9 varied
by less than an order of magnitude from the naturally occurring strictosidine 1. Strictosidine
analogs with methyl groups in the 9, 10, 11, and 12 positions (compounds 2-5) demonstrated
that steric effects did not disrupt enzyme activity dramatically. Not surprisingly, replacement
of methyl groups with larger methoxy substituents (compounds 6, 7) resulted inasmall increase
in the K 5 values. Electronic perturbations did not appear to impact the turnover profoundly;
catalytic efficiencies of fluorinated strictosidine analogs (8, 9) did not vary significantly from
1.

The recently reported crystal structure of SGD from Rauwolfia serpentina (PDB code 2JF6)
indicates that whereas the glucose moiety of 1 is buried within the enzyme active site, the indole
portion of strictosidine points toward the surface of the enzyme. 11 The results of these substrate
specificity studies suggest that the active site of SGD has not evolved to discriminate against
substitutions on the indole ring. Notably, 5 methyl and 6 methyl tryptamine are not turned over
by the enzyme strictosidine synthase (Scheme 1) to form strictosidine analogs 3 and 4,
respectlvely The specificity of the early stages of the MIA pathway therefore appears to be
controlled in large part by strictosidine synthase and not by SGD. Any significant differences
observed in incorporation of indole-substituted tryptamine substrates into alkaloid products
are not likely to be due to the substrate specificity of SGD.

Whereas the modestly sized indole substituents had a moderate effect on SGD catalysis,
replacement of the methy! ester of strictosidine with the significantly larger pentynyl ester?
(compound 10- Figure 2) resulted in a significant decrease in turnover by SGD. No formation
of deglycosylated product was observed under the assay conditions used for strictosidine
analogs 2-9, although deglycosylation was observed when the SGD concentration was
increased from approximately 0.6 nM to 50 uM. The ester appears to be positioned more deeply
in the interior of SGD compared to the indole m0|ety, 1 and steric clashes of the pentynyl
group with the surrounding enzyme residues may impede effective catalysis. Mutation of SGD
may improve turnover of this substrate.

Notably, the slow turnover rate of 10 parallels the results of feeding studies in which C.
roseus hairy root cultures were grown in the presence of the precursor to 10, the pentynyl ester
of secologanin. In these feeding studies, 38,12 3 significant accumulation of pentynyl
strictosidine 10 was observed, a result consistent with slow deglycosylation of 10 by SGD
(Figure 3, black trace). Therefore, the enzyme substrate specificity can predict bottlenecks in
precursor directed biosynthesis. Despite slow deglycosylation by SGD, 10 is nevertheless
converted by C. roseus into several downstream alkaloid products; one alkaloid (serpentine)
is shown in Figure 3 (red trace) 2 The production levels of these alkaloids could be expected
to increase further if a reengineered variant of SGD that more effectively deglycosylates 10 is
incorporated into the MIA pathway.

Strictosidine synthase, the enzyme that forms strictosidine 1 from tryptamine and secologanin
(Scheme 1), is absolutely stereoselective. The V|nc05|de diastereomer 11 is not formed
enzymatically in any known MIA pathway (Figure 2) Although SGD from Rauwolfia
serpentina does not turn over the vincoside dlastereomer4b we observed that the C. roseus
enzyme does in fact turn over the non-natural” vincosidel3 as evidenced by an LC-MS assay
and a glucose detection assay Steady state kinetic constants were not obtained for this
substrate because vincoside 11 spontaneously formed the lactam 12 during the course of the
assay, thereby complicating kinetic analysis. 15 However, the rate of deglycosylation of 11
appeared to be qualitatively slower than that of strictosidine 1. Inspection of the SGD sequence
from R. serpentina, which has 70% amino acid identity with C. roseus gluc05|dase did not
reveal any obvious differences in the strictosidine binding site, 11 so the structural basis for the
difference in diastereoselectivity between the two enzymes remains to be determined.
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SGD catalyzes deglycosylation of strictosidine analogs containing indole substituents at
relatively high catalytic efficiencies. In contrast, a significant decrease in catalysis was noted
after the methyl ester of strictosidine was replaced with a pentynyl ester (compound 10), a
result consistent with accumulation of 10 in feeding studies. Despite the slow turnover of 10
by SGD, 10 is nevertheless converted by C. roseus in vivo into several downstream alkaloid
products.12 We envision that the levels of these alkaloids will increase if a reengineered variant
of SGD that more effectively deglucosylates 10 is incorporated into the MIA pathway.
Surprisingly, SGD from C. roseus appears to turnover vincoside, the diastereomer of
strictosidine, indicating that the stereoselectivity of the MIA pathway is not maintained by
SGD.
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Figure 1.

Representative kinetic data for SGD. The kinetic data for all substrates tested (substrate 4
shown above) fit a sigmoidal curve. The equation used was y = A, + (A1 — Ax)/[1+ (X/Xo)P].
A, was used as the Vax Value, and x, was used as Kg 5. All substrates had a Hill coefficient

of 1.8 or greater.
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Figure 2.
Structures of additional analogs 10 and 11 turned over by SGD. Compound 12 forms
spontaneously from 11.
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Figure 3.

LC-MS traces of extracts from C. roseus root culture incubated with a pentynylated secologanin
substrate analog. More pentynyl strictosidine analog 10 (m/z 583, black trace) accumulates
relative to the final alkaloid analog product pentynyl serpentine (m/z 401, red trace). In contrast,
less natural strictosidine 1 (m/z 531, green trace) is observed relative to natural serpentine
alkaloid (m/z 349, blue trace). See reference 12 for detailed structural characterization of the

alkaloid products.
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Scheme 1.
Strictosidine 1 is deglycosylated by strictosidine glucosidase (SGD) to form a reactive
intermediate that is the precursor for thousands of monoterpene indole alkaloid products.
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Steady state kinetic parameters for strictosidine analogs 1-9. See reference 8 fora description of the enzyme assay.

Analogs Kg.5 (MM)

Viax (MM/min)

relative V../ Kos
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0.22
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0.43

0.15
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0.078

0.018

0.016

0.017

0.016

0.035
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0.038

0.032
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0.3
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0.7
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