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Plants contain countless metabolic pathways that are

responsible for the biosynthesis of complex metabolites.

Armed with new tools in sequencing and bioinformatics, the

genes that encode these plant biosynthetic pathways have

become easier to discover, putting us in an excellent position to

fully harness the wealth of compounds and biocatalysts

(enzymes) that plants provide. For overproduction and isolation

of high-value plant-derived chemicals, plant pathways can be

reconstituted in heterologous hosts. Alternatively, plant

pathways can be modified in the native producer to confer new

properties to the plant, such as better biofuel production or

enhanced nutritional value. This perspective highlights a range

of examples that demonstrate how the metabolic pathways of

plants can be successfully harnessed with a variety of

metabolic engineering approaches.
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Introduction
Plants provide a seemingly inexhaustible pool of struc-

turally diverse chemicals. In planta, the biosynthesis of

these compounds is a response to external or environ-

mental cues, and therefore plays a crucial role in shaping

the interdependencies and diversity of plant ecosystems.

These chemicals impact how effectively plants can be

used as food and energy sources. Moreover, many che-

micals that are produced by plants promote human

health, and numerous plant metabolites are isolated for

use in the pharmaceutical industry. Despite the impor-

tance of plant metabolites, the biosynthetic processes for

only a small fraction of these complicated molecules are

known, indicating that the immense diversity of plant

metabolism has not been explored. The recent advances

in next-generation sequencing technologies, along with
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the continuous development of new algorithms for bio-

informatic analysis of these sequence data, has greatly

expedited the process of plant metabolic gene discovery.

By extension, these discoveries have allowed advance-

ments in the engineering of plant metabolism.

It is of great importance to elucidate and engineer the

plant metabolic pathways that construct complex metab-

olites from simple building blocks. An understanding of

these pathways will allow us to fully harness the wealth of

compounds and biocatalysts that plants provide. In this

perspective, we highlight several important recent exam-

ples of metabolic engineering with plant metabolic path-

ways. These examples demonstrate the wide range of

engineering approaches that can be applied to plant

pathways, and also illustrate the range of problems that

can be addressed by plant metabolic engineering. Collec-

tively, these examples demonstrate the progress that we

are making to fully harness the metabolic power of plants.

Heterologous reconstitution of plant
metabolic pathways
One approach to harness plant metabolic pathways is to

reconstitute the biosynthetic genes into a heterologous

organism [1] (Figure 1). Microbial (e.g. Saccharomyces
cerevisiea and Escherichia coli) and plant (e.g. Nicotiana
benthamiana) hosts can be used, with each system having

advantages and disadvantages. For example, plants,

which utilize photosynthesis, do not require exogenous

carbon feedstocks [2��]. Many plants such as Nicotiana
tabacum (tobacco) and N. benthamiana can generate large

amounts of biomass quickly and cheaply [2��,3], making

them a robust, sustainable, and scalable platform for

large-scale terpene production. On the other hand, mi-

crobial hosts can be genetically manipulated in a rapid

fashion, are fast growing, and the infrastructure required

for microbial production is well established [4]. Below are

two representative examples, one utilizing the plant host

N. tabacum to overproduce high value triterpenoids, and

the other using S. cerevisiea to produce the plant derived

opiate morphine. Other examples using Nicotiana [5–7]

and Saccharomyces [8–12] have also been recently reported

in the literature.

Linear, branch-chained triterpenes that are generated by

the green alga Botryococcus braunii are increasingly recog-

nized as important chemical and biofuel feedstocks [13].

However, the slow-growing B. braunii is an impractical

production system for large-scale isolation of these com-

pounds [14]. In a recent study, high levels of the B. braunii
www.sciencedirect.com
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Heterologous reconstitution of plant pathways in yeast, as exemplified by reconstitution of opiate biosynthetic pathways in yeast. The genes

responsible for biosynthesis of opiates were cloned from opium poppy and introduced into the appropriate vectors for expression of enzymes in

yeast.
triterpene botryococcene (Figure 2) were produced in

N. tabacum plants by the overexpression of an avian farnesyl

diphosphate synthase along with two versions of botryo-

coccene synthases in the chloroplast [2��]. High yields

of methylated botryococcene derivatives could also

be obtained when triterpene methyltransferases were

expressed in the chloroplast. While approximately 90%

of the triterpenes were converted to methylated derivatives

when all enzymes were targeted to the chloroplasts, less

than 15% of triterpenes were methylated when this meta-

bolic pathway was expressed in the cytoplasm, highlighting

the enormous impact that enzyme localization can have on

metabolic engineering. Chloroplasts, which have a high flux

of carbon passing through the MEP (2-C-methyl-D-erythri-

tol 4-phosphate/1-deoxy-D-xylulose 5-phosphate) pathway,

appear to be particularly suited for expression of terpenes

[2��]. While the plants in this study accumulated 0.2–1.0 mg

triterpene per gram of plant fresh weight, the authors of this

study pointed out that previously reported engineering

efforts with sesquiterpene and monoterpene pathways in

plants often resulted in much lower production levels,

perhaps because different terpene compounds may have

differing effects on physiological homeostasis and growth.

Opioids such as thebaine, codeine and morphine are

widely used around the globe to treat pain [15]. Currently,

farming of opium poppies and isolation of opiates from

the poppy latex is the only commercial source of these

compounds. However, in a recent study, yeast (S. cerevi-
siea) was engineered to produce the opiates thebaine and

hydrocodone (Figure 2) de novo from an exogenous sugar
www.sciencedirect.com 
carbon source [16��]. The resulting strains expressed

21 genes for thebaine production and 23 genes for hydro-

codone production. While yields were low (<1 mg/L), this

study provides a dramatic proof-of-principle that complex

opiates can be produced in yeast. Notably, this work was

made possible by the recent discovery of an opiate

biosynthetic gene, reticuline epimerase, which research-

ers had struggled to identify for decades [16��,17��,18��].

Engineering plant pathways to create better
biofuels
A major challenge of the modern era is the transition to a

bio-based economy. Biofuels are a key part of this land-

scape, but challenges to efficiently and cost-effectively

produce biofuels still remain [19,20]. Bioethanol is currently

the major biofuel in use, and it is produced by the easily

accessible sugars of sugar cane and corn. However, as food

security becomes an increasing concern in an ever-expand-

ing population, other approaches for producing biofuels

must be considered [21]. A promising source for next

generation biofuels are those produced from lignocellulosic

biomass that originates from the residual biomass of crops,

such as wheat, corn and sugarcane. Alternatively, the bio-

mass from crops such as poplar and switchgrass that can be

grown on marginal land are also possibilities for fuel pro-

duction [22].

The presence of lignin in plant cell walls undermines the

ability to access the polysaccharides of biomass by enzy-

matic degradation. This biomass must therefore be sub-

jected to hydrolysis under acidic or alkaline conditions to
Current Opinion in Biotechnology 2016, 42:126–132
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Figure 2
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Summary of chemical structures of plant products produced by metabolic engineering strategies discussed in this review.
break the bonds between lignin and hemicellulose, before

subsequent enzymatic degradation can take place. There-

fore, there has been a substantial effort on metabolic

engineering to reduce lignin content in plants, since it is

the major limiting factor of conversion of biomass to

fermentable sugars. One recent study exploited a key

enzyme in lignin biosynthesis, cinammoyl-CoA reductase

(CCR), which catalyzes the conversion of hydroxycinna-

moyl-CoA esters to the corresponding aldehydes [23�]
(Figure 2). Field trials on poplar plants have shown that

biomass from transgenic plants with downregulation of

CCR is more easily processed to production of bioethanol.

Although downregulation of CCR results in reduced

amounts of biomass due to a lower growth rate, the overall

yield of sacharification suggests that this strategy could lead

to more efficient biofuel production [23�]. Another attempt

to design plants with cell walls more susceptible to chemi-

cal depolymerization was based on the discovery of the

enzyme monolignol ferulate transferase (MFT) [24��].
The introduction of MTF into transgenic poplar plants

alters the pool of monolignols, with an increase of mono-

lignol ferulate conjugates (Figure 2). Since the ferulate

conjugates are capable of introducing readily cleavable

ester bonds into the lignin backbone without affecting
Current Opinion in Biotechnology 2016, 42:126–132 
the plant development lignification process, this proved

to be a highly innovative metabolic engineering approach

to produce biomass more susceptible to hydrolysis. How-

ever, it is important to note that altering the structure of the

lignin polymer often has an impact on the growth and

fitness of the resulting plant. A recently published perspec-

tive on the challenges of altering plant lignin content

discusses some of these issues [25].

An excellent example of a systems approach for improv-

ing saccharification yields of lignin was performed on

Arabidopsis thaliana plants [26�]. The authors restricted

lignin biosynthesis to vessels while also increasing sec-

ondary cell wall thickening to generate healthy plants

with increased sugar yield upon saccharification. The

authors noted that reduction in lignin usually correlates

with a loss of integrity in tissues responsible for water and

nutrient distribution from roots to above ground tissues

(vessels) [27,28]. The first step was to redirect lignin

biosynthesis only to vessels by controlling expression

of C4H, a key enzyme in lignin biosynthesis. This control

was performed by replacing the promoter of C4H with the

vessel specific promoter of transcription factor VND6.

Additionally, the authors engineered the increase of
www.sciencedirect.com
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secondary wall thickening by an artificial positive feed-

back loop. The NST1 transcription factor is key to

secondary wall regulation by controlling all the genes

that are involved in biosynthesis of cellulose, hemicellu-

loses, and lignin polymers. A new copy of NST1 was

expressed that was under control of its downstream-

induced promoters to enhance the overall expression.

The results of saccharification of this combinatorial ap-

proach has shown that sugar release was 2.5 times higher

than the wild type and similar to plants with C4H ex-

pression switched off. This lignin rewiring approach

could potentially be transferred to crop plants for en-

hanced bioethanol production (Figure 3).

Storage lipids in plants, triacylglycerols (TAGs) (Figure 2),

which are one of the most abundant and energy-rich forms

of reduced carbon in nature, can be readily converted to

biofuels. A second strategy to improve access to biofuels is

to increase the content of TAGs in plant vegetative tissues

[29]. A variety of genes that enhance TAG accumulation

levels have been identified: the transcription factor WRIN-

KLED1, the TAG biosynthetic gene diacylglycerol acyl-

transferase1-2 (DGAT1-2) and a gene encoding a structural

protein oleosin1 (OLE1) that impacts oil body formation.

Moreover, it has been shown that silencing an enzyme

involved in starch biosynthesis, ADP-glucose pyropho-

sphorylase (AGPase), diverts carbon away from starch

and into TAG biosynthesis, and silencing of the peroxisom-

al ABC transporter1 (PXA1) prevents fatty acids from being

oxidized in the mitochondria. In this study, the authors

combined all of this knowledge into a single metabolic

engineering experiment. WRINKLED1, DGAT1-2 and

OLE1 were expressed in sugar cane, while AGPase and

PXA1 were silenced. The result was transgenic sugar cane
Figure 3

Lignin

Cellulose

Hemicellulose

Basic
hydrolysis

Enzymatic
Hydrolysis

Monolignol

The general process for production of biofuels. Plant biomass is subjected 

hydrolysis and then fermentation of the resulting sugars for production of b

macromolecule is deconstructed to monolignols. By the use of suitable pec

hydrolysed to simple carbohydrates. The carbohydrates are the ‘food’ for e

www.sciencedirect.com 
plants that accumulated TAGs at 95-fold and 43-fold higher

levels in leaves and stems compared to wild type plants.

Engineering new traits into crops by
engineering plant metabolism
With the population of the planet currently at 7 billion and

rising, food security is a tremendously important issue: as

land becomes limiting, it becomes more important to obtain

the maximum nutritional value from the crops that are

grown. Many plant metabolites have important nutritional

and health benefits, so crops can be made more nutrition-

ally dense by upregulating these pathways. In particular,

phenylpropanoid and terpenoid compounds have impor-

tant nutritional roles in the human diet [30]. Therefore,

metabolic engineering of these pathways in crop plants

have the potential to dramatically impact food security.

Phenylpropanoids are plant metabolites that act as antioxi-

dant agents, and therefore have essential health promoting

properties [30]. Engineering the increase in the levels of

these compounds in edible parts of crop plants could

positively impact human nutrition. Tomato has been sub-

jected to some outstanding engineering efforts to improve

the production levels of various metabolites [31–33]. In one

very recent example, phenylpropanoid production was

substantially upregulated in tomato fruits by introducing

fruit-specific expression of the A. thaliana transcription

factor AtMYB12 [34�]. AtMYB12 increases phenylpropa-

noid levels by transcriptionally activating the biosynthetic

genes of these pathways. However, this transcription factor

also appears to direct carbon flux towards aromatic amino

acid biosynthesis, which in turn increases the supply of

substrate for phenylpropanoid metabolism. While the con-

tent of aromatic amino acids increased significantly in
Current Opinion in Biotechnology
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AtMYB12 tomatoes — 10% of fruit dry weight existed as

flavonols and hydroxycinnamates (Figure 2) — the levels

of major sugars simultaneously decreased, suggesting that

carbon flux is being redirected to the shikimate and aro-

matic amino acid pathways. In contrast, other transcription

factors that are known to upregulate anthocyanin biosyn-

thesis do not upregulate the shikimate pathway that leads

to aromatic amino acids. Reprogramming carbon flux to the

shikimate pathway represents a systems based approach to

enhance phenylpropanoid production in plants.

The biosynthesis of betalains (Figure 2), which are tyro-

sine-derived red-violet and yellow pigments, remains un-

solved. Betalains are widely used as natural food colorants

and dietary supplements [35], and L-DOPA, a betalain

pathway intermediate is widely used for treatment of

Parkinson’s disease [36]. Most notably, the first committed

step in the pathway, 3-hydroxylation of tyrosine to form L-

3,4-dihydroxyphenylalanine (L-DOPA) is not character-

ized. Transcriptome analysis of the betalain-producing

plants red beet (Beta vulgaris) and four o’clocks (Mirabilis
jalapa) was used to identify a novel, betalain-related cyto-

chrome P450-type gene, CYP76AD6 that exhibits tyrosine

hydroxylase activity [37]. This discovery enabled metabol-

ic engineering of entirely red-pigmented tobacco plants

through heterologous expression of three genes taking part

in the fully decoded betalain biosynthetic pathway.

Metabolic engineering approaches are also used to address

environmental problems such as heavy metal toxicity

[38,39]. For example, cadmium binds to the thiol groups

of proteins and coenzymes and displaces endogenous metal

cofactors from native binding partners [40]. Phytochelatins

are peptides that protect plants from heavy metal toxicity by

binding tightly to these metals. By engineering the biosyn-

thesis of these peptides, plants could potentially be used to

remediate soils contaminated with heavy metals. In a recent

study, the phytochelatin synthase from A. thaliana (AtPCS1)

was subjected to directed evolution [41��]. Surprisingly,

mutants that conferred the desired tolerance phenotype

in Arabidopsis, Brassica juncea or yeast were catalytically

inferior to the wild type enzyme. It was hypothesized that

transformation with AtPCS1 decreases the levels of the

phytochelatin precursors upon exposure to cadmium, while

the selected mutant enzymes do not. By maintaining the

presence of phytochelatin precursors, redox homeostasis is

improved. However, the attenuated biochemical activity of

the mutant enzyme still supports phytochelatin synthesis

during cadmium exposure. This work is a beautiful example

of how the biochemical properties of an enzyme must be

assessed within the context of the entire metabolic pathway

to achieve the desired biological outcome.

The next generation of engineering plant
metabolic pathways
While metabolic engineering of plant pathways has made

substantial leaps in the last several years, new approaches
Current Opinion in Biotechnology 2016, 42:126–132 
to manipulate plant pathways are continually emerging.

Perhaps most notably, the CRISPR/Cas9 genome engi-

neering system has become an important new genome-

editing tool for plant biologists due to this system’s

efficiency and specificity [42��]. While CRISPR/Cas9

studies in plants have been largely confined to proof of

concept studies [42��], the approach has been implemen-

ted in a number of economically important crop plants

such as rice [43], wheat [44], maize [45], soybean [46],

tomato [47], potato [48] and poplar [49]. In one notable

example, mutations in the MILDEW-RESISTANCE

LOCUS (MLO) proteins in hexaploid wheat have been

engineered through a combination of transcription acti-

vator-like effector nuclease (TALEN) and CRISPR/Cas9

technologies to confer resistance to powdery mildew [44].

While these studies are, for the most part, still in the early

stages, the stage is set for CRISPR/Cas9 to dramatically

impact crop trait improvement.

The use of genetically engineered plants as a food source

has been a controversial topic. For example, as a mecha-

nism to prevent blindness caused by vitamin A deficien-

cy, a strain of rice was genetically engineered to express

three heterologous genes that enabled production of

vitamin A [50,51]. The controversy surrounding the use

of this resulting Golden Rice highlights the challenges of

reconciling public perception and genetically engineered

food crops. The introduction of gene editing, which can

be used to make highly targeted and controlled changes

to the plant genome, has raised the question of whether

certain gene-edited plants can be considered separately

from ‘standard’ GM plants. Additionally, plants can be

gene-edited with constructs that are composed exclusively

of DNA sequence derived from the same or similar plant

species [52]. These so-called cisgenic plants (as opposed to

transgenic plants), which could in principle be obtained

through standard breeding practices, may be more readily

accepted by the public and regulatory bodies [52].

Despite the controversy associated with genetically mod-

ified plants, biotech crop hectarage continues to grow,

with 18 million farmers in 28 countries planting more than

181 million hectares in 2014 [53]. Given the impact that

plant metabolism has on health and food security, meta-

bolic engineering of these pathways is a crucial part of our

future.
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